
72 The Delphi Magazine Issue 56

The Delphi
CLINIC

Edited by Brian Long

Problems with your Delphi project?

Just email Brian Long, our Delphi
Clinic Editor, on clinic@blong.com

Memos And Scroll Bars

QI have noticed that a
TListBox automatically adds

a scrollbar when there are too
many items to fit. On the other
hand, a TMemo component does not
do this. How can I get a TMemo to add
a scroll bar when there are more
lines than can be drawn at any one
time?

AThe TListBox component
does not really add a vertical

scroll bar automatically. A TList-
Box is a wrapper around a Windows
listbox control. It is the underlying
control that is being helpful, not
the Delphi component class.

Unfortunately, the Windows
memo control is not so helpful
in this regard. It is down to the
programmer to choose which
scroll bars to have. You can choose
a vertical scroll bar, a horizontal
scroll bar, both of these scroll bars
or neither. The TMemo component

has a ScrollBars property to
surface these choices to the
component user.

If you want a memo component
to act in a similar way to a listbox,
then you will need to check the
details of the memo’s contents
whenever it is changed.

To customise a memo compo-
nent that is in an application, you
can make an OnChange event han-
dler for it, and write some appro-
priate code that checks whether
scroll bars are needed, setting the
properties as appropriate. To act
just like a listbox, only the vertical
scroll bar should be taken into
consideration.

Listing 1 has some code that will
do this (from the MemoEg.Dpr
project on the disk). The event
handler first verifies that a memo
triggered the event. Then it calcu-
lates how many whole lines of text
can be displayed in the memo by
dividing the memo’s client height
(which means that it discounts the
border of the control) by the
height of one line of text. The text
height calculation is more complex
than it could be (a TCanvas object

has a TextHeight method) for rea-
sons explained in the comments.

The position of the cursor (and
the length of selected text, if any)
are then recorded. If the vertical
scrollbar is toggled, the underlying
memo control will be destroyed
and then recreated with appropri-
ate flags, so we can then reposition
the cursor where it was.

If there are more lines of text in
the memo than can be displayed at
one time, the scrollbar is added,
otherwise it is removed. You can
see that the memo’s line count is
calculated by sending a dedicated
message to the memo, rather than
by using the Count property of its
TStrings object, represented by
the Linesproperty. This is because
the Count property will ignore
blank lines at the end. In this appli-
cation, however, any line that is
outside the displayable area
should cause a scrollbar to appear.

An alternative would be to make
a new component that did this
automatically. If we are writing a
new component, then we should
not use the OnChange event (which
is intended for component users),

type
TWCAccess = class(TWinControl);

function TextHeight(Ctrl: TWinControl; const Msg: String):
Integer;

var
DC: HDC;
OldFont: HFont;
Size: TSize;

begin
{ Can't just ask a control for the font height, as Delphi }
{ caches the font and doesn't select it into the device }
{ context until some drawing is required. }
{ The memo may have a different font to its form and }
{ under those circumstances, you could get bad results. }
{ Access control's device context }
DC := GetDC(Ctrl.Handle);
try
{ Ensure font is selected into DC (saving old font) }
OldFont := SelectObject(DC, TWCAccess(Ctrl).Font.Handle);
try
{ Find text height }
{$ifdef Win32}
Win32Check(GetTextExtentPoint32(DC,PChar(Msg),1,Size));
{$else}
GetTextExtentPoint(DC, @(Msg[1]), 1, Size);
{$endif}
Result := Size.cy

finally
{ Put old font back into memo }
SelectObject(DC, OldFont)

end;
finally

{ Let the DC go }
ReleaseDC(Ctrl.Handle, DC)

end;
end;
procedure TForm1.Memo1Change(Sender: TObject);
var
Memo: TMemo;
MemoNumLines: Integer;
OldSelStart, OldSelLength: Integer;

begin
if Sender is TMemo then
Memo := TMemo(Sender)

else
Exit;

MemoNumLines :=
Memo.ClientHeight div TextHeight(Memo, 'X');

{ Record where we were }
OldSelStart := Memo.SelStart;
OldSelLength := Memo.SelLength;
{ Would use the Count property of Lines, but }
{ this doesn't count a blank line at the end }
{ if Memo.Lines.Count > MemoNumLines then }
if Memo.Perform(EM_GETLINECOUNT, 0, 0) > MemoNumLines then
Memo.ScrollBars := ssVertical

else
Memo.ScrollBars := ssNone;

{ Go back to old position after memo control (possibly) }
{ recreated }
Memo.SelStart := OldSelStart;
Memo.SelLength := OldSelLength;

end;

➤ Listing 1: A memo component
made to auto-detect the need
for a scroll bar.

April 2000 The Delphi Magazine 73

but instead override and extend
the polymorphic Change method
(whose job is to call the OnChange
event handler, and exists for com-
ponent writers). Listing 2 shows a
possible implementation, which
includes a property that enables
and disables this automatic
scrollbar behaviour.

This code is in the DCMemo unit on
the disk, which works in all ver-
sions of Delphi. You’ll notice that I
skipped the diverse calculation of
the text height and went directly to
the memo’s canvas. This may be
asking for trouble, bearing in mind
what was written in the previous
application’s comments, but is fine
if the memo’s font is the same as
the form’s.

MIDAS Delta Packets

QI have been trying for some
time to get information out

of the Delta property of a TClient-
DataSet, which holds information
on modifications, inserts and
deletes since updates were last
applied.

I attended a talk at a recent con-
ference about client datasets and
the speaker implied it was possible
to access the information in the
Delta property without any other
MIDAS components (providers)
being involved. Is this possible?

As you might understand, I am
trying to avoid the MIDAS licence
fee for my application and still use
the TClientDataSet component.

type
TDCMemo = class(TMemo)
private
FAutoScrollBar: Boolean;
procedure SetAutoScrollBar(const Value: Boolean);
function TextHeight(const Msg: String): Integer;

protected
procedure Change; override;
procedure CheckScrollBar; virtual;

published
property AutoScrollBar: Boolean read FAutoScrollBar
write SetAutoScrollBar default False;

end;
...
procedure TDCMemo.Change;
begin
inherited Change;
CheckScrollBar

end;
procedure TDCMemo.SetAutoScrollBar(const Value: Boolean);
begin
if FAutoScrollBar <> Value then begin
FAutoScrollBar := Value;
CheckScrollBar;

end

end;
procedure TDCMemo.CheckScrollBar;
var
MemoNumLines: Integer;
OldSelStart, OldSelLength: Integer;

begin
{ Only proceed if the memo has a parent, and so is
on-screen }

if Parent = nil then
Exit;

MemoNumLines := ClientHeight div TextHeight('X');
{ Record where we were }
OldSelStart := SelStart;
OldSelLength := SelLength;
if Perform(EM_GETLINECOUNT, 0, 0) > MemoNumLines then
ScrollBars := ssVertical

else
ScrollBars := ssNone;

{ Go back to old position after memo control (possibly)
recreated }

SelStart := OldSelStart;
SelLength := OldSelLength;

end;

➤ Listing 2: A componentised
version of Listing 1. AClient dataset components

are used in thin-client MIDAS
applications to contain the data for
displaying on the UI. They are pop-
ulated by provider components in
middle tier MIDAS applications,
which may be using BDE compo-
nents to get the data in the first
place. They can also be used in
normal BDE-less applications as a
simple way of storing and manipu-
lating a dataset, without the
overhead of a database engine.

The client dataset has two prime
properties for storing the data. The
Data property is an OleVariant con-
taining an array of bytes which rep-
resent the original data. Delta is
another OleVariant array of bytes
which records information about
any changes that have been made
to the data. These two properties
are referred to as the data packet
and the delta packet.

In a multi-tiered MIDAS applica-
tion, changes in the delta packet
are applied to the server using
either the Reconcile or Apply-
Updates method. These send the
delta packet back to the middle tier
application to deal with as appro-
priate. In single tier applications
(as per the question) changes are
applied by calling MergeChangeLog.
This merges the delta packet into
the data packet.

In the help for delta packets,
editing it shows how to use a
provider’s OnUpdateData event han-
dler to iterate through the ele-
ments in a delta packet. Delta is
passed to this event handler as a
TClientDataSet, and you use the
UpdateStatus property of the client

dataset to ascertain what type of
change each record represents.

However, providers tend to
imply use of MIDAS in a distributed
application, requiring licence fees.
So we need to look for another
option to answer the question,
which talks about non-licensed
MIDAS applications (which are
one tier applications that do not
send data packets from one
application to another).

Fortunately, the answer ends up
being quite straightforward. To
look at one client dataset’s Delta
property, you can assign it directly
to another client dataset’s Data
property. The two properties are
both OleVariant arrays of bytes,
and are assignment compatible.
Again, the UpdateStatus property
of the second client dataset is used
to identify what change happened
to each record.

Each change made to the origi-
nal client dataset is recorded in
one or two records in the Delta
property. If the record was modi-
fied, the delta packet holds a copy
of the original unmodified record,
as well as another record con-
taining just the changed fields. If a
record is modified more than once,
the delta packet merges the new
changes with the original change
details.

An application on the disk called
CDSDelta.Dpr shows how this
works. It involves one client
dataset that has been populated
with some of the records from the
BioLife.DB sample table and which
is connected, via a datasource, to a
DBGrid, DBImage and DBMemo.

74 The Delphi Magazine Issue 56

The user is able to edit all fields
in the table except the graphic
field. The AfterPost event (trig-
gered after a record is changed or
added) and AfterDelete event
(triggered after a record is deleted)
share an event handler. The code
in the event handler is minimal. It
closes a second client dataset,
then assigns the first client
dataset’s Data property to the
second one’s Delta property.
Finally, it opens the second client
dataset, which is connected to its
own DBGrid, DBImage and DBMemo
controls.

The property assignment and
opening of the second client
dataset are only executed if there
are any changes represented in
the original Delta property (the
ChangeCount property is checked).
This is because an error is pro-
duced if you attempt to read from
an empty Delta property.

You might think that the test
would be irrelevant, since the code
only executes after a change actu-
ally occurs, but this is not so. If you
make a change to a record and, for
example, make another change
that effectively sets the record
back to its original state, the
change is removed from the Delta
packet. Consequently, it is possi-
ble to end up with an empty Delta
property.

The only other code in the
program is an OnCalcFields event
handler for the second client
dataset. A calculated field has
been added to it to describe what
form of change is represented by
that record in the Delta packet

(unmodified, modified, inserted or
deleted).

You can see the code in Listing 3
and the program, after a few
changes have been made, is shown
in Figure 1. When changes are
recorded in the Delta property,
BLOb fields are omitted, unless
they themselves have been modi-
fied. This explains why you do not
see any fish pictures in the lower
DBImage (the BLOb field is never
modified by the program).

One point to remember about
single tier thin-client applications
written using client datasets is that
you must still distribute one sup-
port DLL from the BDE (even
though they do not use any normal
BDE components). In the case of
Delphi 3 and 4, you must distribute
DBCLIENT.DLL. Delphi 5 renames
this to MIDAS.DLL.

Drawing On Status Bars

QBoth Microsoft Word and
Windows Explorer have

icons displayed on their status
bars under some circumstances. I
can only get a status bar to display
text. How do I draw pictures on it?

AA status bar can either dis-
play one simple text panel

or, potentially, multiple panel sec-
tions. You set up the multiple
panel sections (or status panels)
by using the property editor for
the Panels property. The property
editor allows you to manufacture
TStatus- Panel objects.

Using the SimplePanel property,
you can dictate whether the status
bar displays all the status panels
(when SimplePanel is False) or just
the one simple panel (when
SimplePanel is True).

When the simple panel is dis-
played, the status bar’s SimpleText
property controls what is written.
When multiple panels are dis-
played, they each have a Textprop-
erty that controls what they
display. At least, this is the case
when the TStatusPanel object’s
Style property is set to psText. If
you change this property to
psOwnerDraw in any status panels,
then you can take control of
drawing them.

The code that draws these
owner draw panels is placed in the
status bar’s OnDrawPanel event han-
dler. This event handler is passed
the status bar object, the status
panel that needs drawing, and also
a TRect record that describes the
area in the status bar occupied by
the panel.

A project on the disk shows an
example of drawing into an owner
drawn status bar panel, which
runs in all 32-bit Delphi versions. It
uses an image list set up with a few

procedure TForm1.CDS1AfterChange(DataSet: TDataSet);
begin
CDS2.Close;
//Error arises if Delta is empty
if CDS1.ChangeCount > 0 then begin
CDS2.Data := CDS1.Delta;
CDS2.Open

end
end;
procedure TForm1.CDS2CalcFields(DataSet: TDataSet);
begin
case CDS2.UpdateStatus of
usUnmodified: CDS2Type.Value := 'Unmodified';
usModified: CDS2Type.Value := 'Modified';
usInserted: CDS2Type.Value := 'Inserted';
usDeleted: CDS2Type.Value := 'Deleted';

end
end;

➤ Listing 3: Code to assign a
client dataset’s Delta property
to another client dataset.

➤ Figure 1: Viewing a client
dataset’s Delta property.

76 The Delphi Magazine Issue 56

images in it, along with a timer
component. Every second, the
status bar (called Bar) is invali-
dated, causing it to redraw. This
will trigger the OnDrawPanel event of
the status bar which asks the
image list to draw one of its images
into the status panel. You can see
the program running in Figure 2.

Accessing Application Icons

QI am writing a program that
will launch applications and

I want it to be able to access the
icon associated with any Windows
application, so I can display it
somewhere. Windows applica-
tions are not usually installed with
a separate icon file, so how can I
access it?

AWindows Explorer accesses
application icons using a

dedicated routine from the Win-
dows shell API. SHGetFileInfo actu-
ally extracts many pieces of
information about a specified file
to enable Windows Explorer to de-
scribe the file in various ways to
the user.

The function is defined in the
ShellAPI unit as shown in Listing 5.

The Windows SDK help describes
the record that SHGetFileInfo
works with as being a SHFILEINFO
record. Delphi defines this type (in
version 4 and later) but also
defines the more Delphi-esque
TSHFileInfo record (in all 32-bit
versions), allowing you a choice.

To get information, you pass the
full path of a file as the first parame-
ter to SHGetFileInfo. The second
parameter is only used in very spe-
cific circumstances, so passing a
zero for it will suffice. A record vari-
able (whose type definition is
shown in Listing 5) should be
passed as the third parameter, and
its size as the fourth. The record
will be filled in with information
by the function. The final parame-
ter is a combination of flags that

specify what information to
retrieve.

There are a total of sixteen flags
to choose from, but the more
useful ones are shown in Table 1. A
sample project ShellIcon.Dpr is on
the disk, showing how to call the
function. In fact it calls it several
times to get several pieces of
information.

The code is shown in Listing 6.
An open dialog is used to choose a
file and the resultant filename is
passed to each SHGetFileInfo call.
The first call requests the file’s dis-
play name (returned in the
record’s szDisplayName field) and
file type description (returned in
the szTypeName field).

The next call passes SHGFI_
EXETYPE as the only flag to SHGet-
FileInfo, causing it to return a
32-bit value that indicates the exe-
cutable type. If the high word is
zero and the low word contains the
letters MZ, the file is a DOS batch file
or executable. If the high word is
zero and the low word contains PE,
the file is a Win32 console applica-
tion. If the high word contains $300,
$350 or $400 and the low word is

procedure TForm1.CDS1AfterChange(DataSet: TDataSet);
begin
CDS2.Close;
//Error arises if Delta is empty
if CDS1.ChangeCount > 0 then begin
CDS2.Data := CDS1.Delta;
CDS2.Open

end
end;
procedure TForm1.CDS2CalcFields(DataSet: TDataSet);
begin
case CDS2.UpdateStatus of
usUnmodified: CDS2Type.Value := 'Unmodified';
usModified: CDS2Type.Value := 'Modified';
usInserted: CDS2Type.Value := 'Inserted';
usDeleted: CDS2Type.Value := 'Deleted';

end
end;

➤ Listing 4: Code to show varying images on a status bar’s panel.

➤ Figure 2: A status bar with
a picture on it.

type
_SHFILEINFOA = record
hIcon: HICON;
iIcon: Integer;
dwAttributes: DWORD;
szDisplayName: array [0..MAX_PATH-1] of AnsiChar;
szTypeName: array [0..79] of AnsiChar;

end;
SHFILEINFOA = _SHFILEINFOA;
SHFILEINFO = SHFILEINFOA;
TSHFileInfoA = _SHFILEINFOA;
TSHFileInfo = TSHFileInfoA;

function SHGetFileInfo(pszPath: PAnsiChar; dwFileAttributes: DWORD;
var psfi: TSHFileInfo; cbFileInfo, uFlags: UINT): DWORD; stdcall;

➤ Listing 5: SHGetFileInfo and its
associated record type, as
defined in Delphi 5.

SHGetFileInfo flag Flag meaning

SHGFI_DISPLAYNAME Get the display name for the file

SHGFI_TYPENAME Get the file type description

SHGFI_EXETYPE Get the executable type

SHGFI_ICON Get normal icon, whose size is defined
by system metric values

SHGFI_ICON or SHGFI_SMALLICON Get small icon

SHGFI_ICON or SHGFI_LARGEICON Get large icon

SHGFI_ICON or SHGFI_SELECTED Get normal icon blended with system
highlight colour

➤ Table 1: A selection of
SHGetFileInfo flags.

April 2000 The Delphi Magazine 77

either NE or PE, the file is a Windows
application. Otherwise, the file is
not an executable.

The last three calls each get an
icon associated with the file, these
being a large icon, small icon and
an icon that looks selected (by
being blended with the system
highlight colour). You can see the
program showing these icons, and
the other information gleaned, in
Figure 3.

COM RTL Support

QI know that there are two
RTL routines that can be

used to connect to an Automation
object by specifying a ProgID
(CreateOleObject and GetActive
-OleObject). However, for connect-
ing to COM objects using a ClassID
there only appears to be one
(CreateComObject). I would like to
connect to a COM object that might
be registered in the Running Ob-
ject Table. How can I do this?

AWhen connecting to an
Automation object (a COM

object that implements an inter-
face based on IDispatch) it is quite

common to use CreateOleObject or
GetActiveOleObject. GetActiveOle-
Object looks for an Automation
object of the requested type that is
registered as the active object
in the Windows Running Object
Table (ROT). If one exists, it
returns a reference to its IDispatch
interface. If one is not found, it
raises an EOleSysError exception.
CreateOleObject ignores any active
instance of an Automation object
and creates a new one (if possible).
If one cannot be created for any
reason, an EOleSysError is raised.

These routines use a ProgID
(programmatic identifier) to iden-
tify the type of object that is
required. A ProgID is a string made
of two words separated by a full
stop. The first word represents the
program that implements the
object. The second word repre-
sents the specific object required.
This ProgID is defined by the
object itself. For example,
Microsoft Word 97 has two
ProgIDs, Word.Application and

Word.Basic, that allow
access to the VBA Auto-
mation object and the
WordBasic Automation
object respectively.

To connect to an
existing Automation
object if one exists, or to

a new instance if one does not
exist, you use code like that shown
in Listing 7.

Most commercial Automation
objects will register their first
instance in the ROT to allow multi-
ple client applications access to
the same instance of the Automa-
tion object, rather than each client
getting a separate instance of the
Automation object. Delphi Auto-
mation objects do not do this
unless you add your own code in to
do it. There was some discussion
of this subject in The Delphi Clinic
in Issue 46, and also in COM Corner
in Issue 53.

Automation objects are just
COM objects at the end of the day.
They just happen to implement
IDispatch and publish a ProgID.
When talking to COM objects, it is
common to refer to them using a
ClassID. This is a GUID (Globally
Unique IDentifier), a 128-bit
number, often displayed as a string
(particularly in the Windows regis-
try), used to uniquely identify a
COM class. A ClassID is passed to
CreateComObject in order to create
a new instance of a COM object of a
given class and get back a
reference to its IUnknown interface.

However, if an instance of the
COM class already exists and has

➤ Figure 3: Extracting
file information.

procedure TMainForm.btnChooseFileClick(Sender: TObject);
var
FI: TSHFileInfo;
ExeType: DWord;

const
MZ = $5A4D; //"MZ"
NE = $504E; //"NE"
PE = $4550; //"PE"

begin
if dlgOpen.Execute then begin
//Get display name and type description
SHGetFileInfo(PChar(dlgOpen.FileName), 0, FI, SizeOf(FI),
SHGFI_DISPLAYNAME or SHGFI_TYPENAME);

lblDisplayName.Caption := FI.szDisplayName;
lblFileType.Caption := FI.szTypeName;
//Get EXE type
ExeType := SHGetFileInfo(PChar(dlgOpen.FileName), 0, FI,
SizeOf(FI),SHGFI_EXETYPE);

if ExeType = MZ then
lblExeType.Caption := 'MS-DOS .EXE, .COM or .BAT file'

else if ExeType = PE then
lblExeType.Caption := 'Win32 console application'

else if ((LoWord(ExeType) = NE) or
(LoWord(ExeType) = PE)) and
((HiWord(ExeType) = $0300) or
(HiWord(ExeType) = $0350) or
(HiWord(ExeType) = $0400)) then
lblExeType.Caption := 'Windows application'

else
lblExeType.Caption := 'Not an executable file';

//Get large icon
SHGetFileInfo(PChar(dlgOpen.FileName), 0, FI,
SizeOf(FI), SHGFI_ICON or SHGFI_LARGEICON);

imgLarge.Picture.Icon.Handle := FI.hIcon;
//Get small icon
SHGetFileInfo(PChar(dlgOpen.FileName), 0, FI,
SizeOf(FI), SHGFI_ICON or SHGFI_SMALLICON);

imgSmall.Picture.Icon.Handle := FI.hIcon;
//Get selected icon
SHGetFileInfo(PChar(dlgOpen.FileName), 0, FI,
SizeOf(FI), SHGFI_ICON or SHGFI_SELECTED);

imgSelected.Picture.Icon.Handle := FI.hIcon;
end

end;

➤ Listing 6: Getting file
information with the Shell API. var

Server: Variant;
...
try
Server := GetActiveOleObject('ServerApp.AutoObj')

except
Server := CreateOleObject('ServerApp.AutoObj')

end;

➤ Listing 7: Connecting a
running object, or failing that
to a new object.

78 The Delphi Magazine Issue 56

registered itself as the active
object in the ROT, the Delphi RTL
provides no COM equivalent to the
GetActiveOleObject Automation
support routine. The symmetri-
cally equivalent routine you are
looking for is GetActiveComObject,
but unfortunately this routine does
not exist in the RTL. However, you
can implement one using the code
in Listing 8 (OleCheck is defined in
the ComObj unit).

This allows you to access the
running (or new) COM object using
code laid out similar to Listing 7,
something like Listing 9.

More than likely, the reason the
RTL is devoid of this routine is that
COM objects are typically imple-
mented in in-proc (in process)
servers, which are DLLs loaded
into the address space of the client
application. COM object instances
created by in-proc servers cannot
be accessed by other applications.
They must create their own inst-
ances through their own locally
loaded copy of the in-proc server.
On the other hand, Automation

servers are typically implemented
as out-of-proc (out of process)
servers, which are EXE files. COM
object instances created in an
out-of-proc server can register
themselves in the ROT and be
accessed by other client
applications.

Object Assignment

QI have defined a class TFoo,
which has a simple string at-

tribute, and I create two instances
of it (Listing 10). I understand that
the statement:

A := B;

causes the two variables A and B to
point to the same object (the one
that Bwas pointing to). If I then do:

A.Data := ‘Other value’;

then B.Data also contains ‘Other
value’. What I want to know is how
I can copy the contents of B to the
contents of A instead of copying

just the address of one to the
address variable of the other?

AI’m glad this question ar-
rived recently because it

also allows me to logically answer
the next question which has been
pending for a while (see below).

Because Delphi implements
objects via pointers (object refer-
ences) and dynamic memory man-
agement (which occurs during
construction and destruction),
this is a common problem.
Assigning an object reference vari-
able to another object reference
variable copies the address of the
objects on the heap, not the con-
tents of the objects. Fortunately,
the VCL has had a mechanism
designed specifically for this
problem since its inception in
Delphi 1.

The TPersistent class, which
inherits from TObject, has a public
Assign method and a lesser known
protected AssignTo method. These
both take a parameter defined as a
TPersistent object and are dis-
cussed across six pages in Danny
Thorpe’s book Delphi Component
Design, now sadly out of print.

An application can call the
Assign method of a destination
object, passing a source object as a
parameter to it. You can override
Assign in your class and write code
that copies the attributes of the
source object into the destination
object. The job of Assign is there-
fore to do whatever is necessary to
clone the source object.

When implementing Assign,
make sure you check for a nil
parameter value. When nil is
passed to Assign, you should set
your instance data fields to their
default initialised state. The TFoo
class from Listing 10 has been
given an Assignmethod in the code
in Listing 11.

Because of the TPersistent
parameter type, Assign can also
cater for source objects that are
instances of different classes, if
that is appropriate. However,
anything that you do not support
should be passed onto the
inherited version of Assign.

If the source object ends up
being passed back to the original

function GetActiveComObject(const ClassID: TGuid): IUnknown;
begin
OleCheck(GetActiveObject(ClassID, nil, Result));

end;

➤ Listing 8: How to implement the missing COM RTL routine.

const
CLASS_AutoObj: TGUID = '{00DEFE03-E9DB-11D3-96EC-444553540000}';

...
var
Server: IAutoObj;

...
try
Server := GetActiveComObject(CLASS_AutoObj)

except
Server := CreateComObject(Class_AutoObj)

end;

➤ Listing 9: Accessing a running (or new) COM object.

TFoo = class
public
Data: String;
constructor Create(AData: String);

end;
...
constructor TFoo.Create(AData: String);
begin
Data := AData

end;
...
var
A, B: TFoo;

...
A := TFoo.Create('Object A');
B := TFoo.Create('Object B');

➤ Listing 10: A simple class.

80 The Delphi Magazine Issue 56

implementation of Assign in
TPersistent, then the whole opera-
tion gets turned around. The code
calls the source object’s AssignTo
method, passing the destination
object as the parameter. The impli-
cation here is that if the destina-
tion object is unaware of how to
deal with the source object, then
the source object might be aware of
how to copy itself into the
destination object.

The reason AssignTo was added
to TPersistent was to allow new
classes to be written, which can be
effectively assigned to older
classes without necessarily having
to rewrite the code in those older
classes.

Object Property Assignment

QDelphi lets me assign from
one object property directly

to another one, without any
complaint. In fact, I can assign from
the same object property (say, the
Lines property of a TMemo) to
another object property (say, the
SQL property of a TQuery) repeat-
edly, without any apparent prob-
lems occurring in my program.
My concern arises because I know
that Delphi uses pointers to refer
to objects. Surely, a statement
such as:

Query1.SQL := Memo1.Lines;

causes the address of the Lines
object to be copied across and
stored in the SQL pointer variable?

AThat conclusion is exactly
the one you might draw if

you had just digested the previous
question. Yes, Delphi uses object
references, which contain the ad-
dress of an object on the heap.
However, no problem occurs in the
statement offered by the ques-
tioner thanks to the way properties
are implemented. Remember that
the statement in question is deal-
ing with two properties, not two
variables.

A property itself has no storage
space allocated for it by the com-
piler. A property is defined in
terms of a type (so the compiler
can validate values assigned to it,
or variables it is assigned to), and
what should happen when it is
read from and written to.

Typically, when a property is
read from (such as when it is
assigned to something), a private
or protected function method is
called. That method will return a
value that can be used. Sometimes,
if there is little point in having such
a method, the property can be

defined to read directly from a
data field in the class.

When a property is written to,
typically the value assigned is
passed as a parameter to a private
or protected procedure method.

To understand why the property
assignment goes according to
plan, you need to look at the defini-
tion of the SQL property (or any
similar property exposed by the
many VCL components). The SQL
property in the TQuery class is
defined like this:

property SQL: TStrings
read FSQL write SetQuery;

This means that the statement
shown above actually gets
implemented as:

Query1.SetQuery(Memo1.Lines);

So what looked like an assignment
has changed into a method call. If
you look into the implementation
of the TQuery.SetQuery method,
you will see that it effectively boils
down to this:

Query1.Close;
Query1.UnPrepare;
Query1.SQL.Assign(Memo1.Lines);

So, ultimately, because of the
camouflaging mechanism we call a
property, the assignment look-
alike turns into a call to the Assign
method, which we looked at in the
previous question.

As Danny Thorpe says in his
book: ‘Where C++ has copy con-
structors, implicitly created tempo-
rary instances, and assignment
operators, Delphi has Assign meth-
ods and property write methods’.

TFoo = class(TPersistent)
public
Data: String;
constructor Create(AData: String);
procedure Assign(Source: TPersistent); override;

end;
...
procedure TFoo.Assign(Source: TPersistent);
begin
if Source = nil then
Data := ''

else if Source is TFoo then
Data := TFoo(Source).Data

else
inherited Assign(Source);

end;
...
var
A, B: TFoo;

...
A := TFoo.Create('Object A');
B := TFoo.Create('Object B');
A.Data := 'Other value';
B.Assign(A);

➤ Listing 11: A simple class that supports being copied from and to.

	Memos And Scroll Bars
	MIDAS Delta Packets
	Drawing On Status Bars
	Accessing Application Icons
	COM RTL Support
	Object Assignment
	Object Property Assignment

